
1

Basics of PL/SQL

Writing Your First Program

A SIMPLE PL/SQL CODE BLOCK THAT
DISPLAYS THE WORD HELLO

SQL> set serveroutput on
SQL> begin
 2 dbms_output.put_line ('Hello');
 3 end;
 4 /
Hello

PL/SQL procedure successfully completed.

SQL>

End listing

2

”. Some important features of the program are:

• The executable portion of a PL/SQL code block starts with the keyword Begin
and is terminated with the keyword End.

• PL/SQL code blocks are comprised of statements. Each statement ends with a

semi-colon.

• PL/SQL code blocks are followed by a slash (/) in the first position of the
following line. This causes the code block statements to be executed.

• The only PL/SQL code block keyword that is followed by a semi-colon is the

End keyword.

Executing the PL/SQL Program
Executing a PL/SQL Program

SQL> START
C:\BUSINESS\ORACLE~1\PLSQL1\L1.SQL

HELLO

PL/SQL PROCEDURE SUCCESSFULLY
COMPLETED

End listing

3

Practice

1. Create a program that outputs the message “I am soon to be a PL/SQL expert.”

CODE BLOCK COMPONENTS AND BLOCK LABELS
Code Block Sections

There are four types of code block sections. These are:
• Header - This is the optional first section of the code block. It is used to

identify the type of code block and its name. The code block types
are: anonymous procedure, named procedure, and function. A
header is only used for the latter two types.

• Declaration - This is an optional section of the code block. It contains the name
of the local objects that will be used in the code block. These
include variables, cursor definitions, and exceptions. This section
begins with the keyword Declare.

• Executable - This is the only mandatory section. It contains the statements that
will be executed. These consist of SQL statements, DML
statements, procedures (PL/SQL code blocks), functions (PL/SQL
code blocks that return a value), and built-in subprograms. This
section starts with the keyword Begin.

• Exception - This is an optional section. It is used to “handle” any errors that
occur during the execution of the statements and commands in the
executable section. This section begins with the keyword
Exception.

4

The code block is terminated by the End keyword. This is the only keyword within the
construct that is followed by a semi-colon (;). The only required section is the executable
section. This means the code block must have the Begin and End keywords. The code
block is executed by the slash (/) symbol.

Executing a PL/SQL Program

SQL> SET SERVEROUTPUT ON;
SQL> DECLARE
 2 LOCAL_VARIABLE VARCHAR2(30);
 3 BEGIN
 4 SELECT 'NUMBER OF
EMPLOYEES'||TO_CHAR(COUNT(LAST_NAME),
'999')
 5 INTO LOCAL_VARIABLE
 6 FROM EMPLOYEE;
 7 DBMS_OUTPUT.PUT_LINE
(LOCAL_VARIABLE);
 8 EXCEPTION
 9 WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('ERROR
OCCURED');
 10 END;
 11 /
NUMBER OF EMPLOYEES 19

PL/SQL PROCEDURE SUCCESSFULLY
COMPLETED.

End Listing

5

Block Labels, Labels, and the Goto Keyword

Some rules to remember are:

• Labels are defined by placing two less than (<<) symbols before the label name
and two greater than (>>) symbols after the label name.

• The Goto keyword is used to redirect the focus of the code block. The name of

the label is placed after the Goto keyword.

A Block label is similar to a label except that it can be used to qualify the contents of a
block. The Block label is placed at the beginning of the block. The label is then placed
following the End keyword. By placing the label definition and the end label, you can
identify the code block and the variables within the labeled block. This can be a useful
device when the program contains multiple code blocks.

A Block Label, Label, and Goto Command

SQL> BEGIN <<B_LABEL>>
 2 GOTO MIDDLE;
 3 <<TOP>>
 4 DBMS_OUTPUT.PUT_LINE ('TOP
STATEMENT');
 5 GOTO BOTTOM;
 6 <<MIDDLE>>
 7 DBMS_OUTPUT.PUT_LINE ('MIDDLE
STATEMENT');
 8 GOTO TOP;
 9 <<BOTTOM>>
 10 DBMS_OUTPUT.PUT_LINE ('BOTTOM
STATEMENT');
 11 END B_LABEL;
 12 /
MIDDLE STATEMENT
TOP STATEMENT
BOTTOM STATEMENT

PL/SQL PROCEDURE SUCCESSFULLY
COMPLETED.

SQL>

End listing

6

Comments

Comments can be entered into the code block. Two devices are available. These are:

-- Two dashes placed at the beginning of the line will comment out the entire
line.

/* */ The slash-star (/*) symbol marks the beginning of a commented area. The

star-slash (*/) symbol marks the ending. Multiple statements can be
included in the commented section.

Practice

2. Create a PL/SQL procedure that has four sections. Each section should output a
statement. Use labels and the Goto command to output the section messages in the
following order:

Section 3
Section 2
Section 1
Section 4

7

DECLARING VARIABLES AND ASSIGNING VALUES

Defining Variables

Variables are defined in the declaration section of the program. The syntax is:

Variable_name datatype(precision);

Oracle treats a variable definition similar to other statements. The definition must end
with a semi-colon. The definition statement begins with the variable name and contains
the data type. These are the mandatory parts of the definition. A value may also be
assigned to the variable during the definition statement. The variable may also be
constrained.

Character Definitions

The following are examples of definitions:

first_name varchar2(15);
 social_security_number char(11);

The PL/SQL maximum length of the char and varchar2 data types is larger than the
length allowed in the Oracle database.

8

Numeric Definitions

Numeric data definitions can include two parameters. The first parameter is precision
and the second is scale. Precision defines the overall length of the value. Scale
determines the number of digits to the left or right of the decimal point. The range of
scale is –84 to 127.

If a scale is specified, rounding will occur at the end. The following rules apply:

• Positive scale definitions cause rounding to the right of the decimal point.

• Negative scale definitions cause rounding to the left of the decimal point.

• Zero scale definitions cause rounding to the nearest whole number.

The default precision of a number is 38.

age integer(3);
gallons number(3);
salary number(8,2);

9

Other Definitions

Several other types of definitions are available. These are:

• Boolean This variable type is used to record a condition.
The value can be true, false, or null.

• Date This variable type is used to record date values.

• Exception This variable type is used to define a custom named

exception or error handler.

The following are several example definitions:

 yes boolean;
 e_day date;
 big_error exception;

Constrained Definitions

Constraints can be placed on the variables defined in the code block. A constraint is a
condition that is placed on the variable. Two common constraints are:

• Constant - This constraint will cause Oracle to ensure the
value is not changed after a value is initially assigned to the
variable. If a statement tries to change the variable value,
an error will occur.

• Not Null - This constraint will cause Oracle to ensure the

variable always contains a value. If a statement attempts to
assign a null value to the variable, an error will occur.

The following are example of constrained variable definitions:

 pi constant number(9,8) := 3.14159265;

 birth_date not null date := ‘08-APR-53’;

10

Aggregate and PL/SQL Record Definitions

An aggregate variable definition is based upon a database or PL/SQL object. They
consist of one or more variables and are extremely useful. They have two advantages:

1. The developer can automatically define a variable with the same data
specifications as a table column or cursor variable without actually knowing
the specifications.

2. The developer can set up an array of variables for a cursor or table record with

one statement. The variables will have the same specifications as the table or
cursor variables.

Variable_name table_cursor_name.column_name%type;

lname employee.last_name%type;

11

Array_name table/cursor_name%rowtype;

Dept_var department%rowtype;

Dept_var.department

Dept_var.department_name

Assigning Values to Variables

A PL/SQL procedure would not be useful unless there is a way to populate the variables
with a value. Fortunately, PL/SQL gives us two ways to accomplish this. These are:

• := - The colon/equal sign assigns the argument on the left of the
operator to the argument or variable on the right of the sign.

• Into - The Into keyword is used in a Select or Fetch statement. When

used in a Select statement, it assigns the values in the Select
clause to the variables following the Into keyword. When used
with the Fetch statement, it assigns the cursor values to the
variables that follow the Into keyword.

12

Assigning Values to Variables

SQL> declare

2 retirement_date date;
3 emp_var employee%rowtype;
4 begin
5 select min(birth_date)
6 into emp_var.birth_date
7 from employee;
8 retirement_date := add_months(emp_var.birth_date,

12*65);
9 dbms_output.put_line (to_char(retirement_date));

10 end;
11 /
29-DEC-73

PL/SQL procedure successfully completed.

SQL>

End Listing

PL/SQL
Record
Definiti

Assigning
values to
variables

Using the Into Assignment Keyword With PL/SQL Records

Assigning Values to Variables

SQL> declare

2 retirement_date date;
3 emp_var employee%rowtype;
4 begin
5 select *
6 into emp_var
7 from employee where last_name = 'ANTHONY';
8 retirement_date := add_months(emp_var.birth_date,

12*65);
9 dbms_output.put_line (to_char(retirement_date));

10 end;
11 /
15-FEB-85

PL/SQL procedure successfully completed.

SQL>

End listing

13

Practice

3. Create a PL/SQL procedure that computes the retirement age of the youngest
employee. You should also list the employee’s name.

4. Modify the program in #3 to compute the number of days between today and the

employee’s retirement date.

5. Identify the number of tool purchases for Harry Truman and George Bush.

Output the name of the employee with the greater number of tool purchases.

THE IF-THEN-ELSE STRUCTURE

To be effective, a code block or procedure needs to have commands that allow the
developer to document the logic necessary to determine the behavior. Oracle uses
conditional logic statements to form the procedure’s behavior. The logic statements
come in two forms. These are:

 If-then-else structures

 Elsif statements

14

The If-Then-Else Structure

The basic structure is as follows:

If (conditional expression) then
Statements;

Else
Statements;

End if;

An If-Then-Else Structure Example

SQL> declare
2 male_avg number;
3 female_avg number;
4 begin
5 select avg(months_between(employment_date, birth_date)/12)
6 into male_avg
7 from employee
8 where gender = 'M';
9 select avg(months_between(employment_date, birth_date)/12)

10 into female_avg
11 from employee
12 where gender = 'F';
13 if (male_avg > female_avg) then
14 dbms_output.put_line ('Males have the greatest avg hiring age');
15 dbms_output.put_line ('With and avg age of '||to_char(male_avg));
16 else
17 dbms_output.put_line ('Females have the greatest avg hiring age');
18 dbms_output.put_line ('With and avg age of '||to_char(female_avg));
19 end if;
20 end;
21 /
Males have the greatest avg hiring age
With and avg age of 55.91761543327008222643896268184693232141

PL/SQL procedure successfully completed.

SQL>

End Listing

15

Nested If-Then-Else Structures
An If-Then-Else Structure With a Nested If Statement

SQL> declare
2 male_avg number;
3 female_avg number;
4 begin
5 select avg(months_between(employment_date, birth_date)/12)
6 into male_avg
7 from employee
8 where gender = 'M';
9 select avg(months_between(employment_date, birth_date)/12)

10 into female_avg
11 from employee
12 where gender = 'F';
13 if (male_avg > female_avg) then
14 dbms_output.put_line ('Males have the greatest avg hiring age');
15 dbms_output.put_line ('With and avg age of '||to_char(male_avg));
16 if (male_avg > female_avg + 10) then
17 dbms_output.put_line ('The male average is greater than 10 years');
18 end if;
19 else
20 dbms_output.put_line ('Females have the greatest avg hiring age');
21 dbms_output.put_line ('With and avg age of '||to_char(female_avg));
22 end if;
23 end;
24 /
Males have the greatest avg hiring age
With and avg age of 55.91761543327008222643896268184693232141
The male average is greater than 10 years

PL/SQL procedure successfully completed.

SQL>

End Listing

Outer If
Condition

Inner or Nested
If Condition

The Elsif/Then Structure
An If-Then-Elsif Structure

SQL> declare
2 current_month char(3);
3 begin
4 select to_char(sysdate, 'MON') into current_month from dual;
5 if current_month = 'JAN' then
6 dbms_output.put_line ('My daughter Jane was born in January');
7 elsif current_month = 'FEB' then
8 dbms_output.put_line ('My good friend Ron was born in February');
9 elsif current_month = 'MAR' then
10 dbms_output.put_line ('My father was born in March');
11 elsif current_month = 'APR' then
12 dbms_output.put_line ('I was born in April');
13 elsif current_month = 'MAY' then
14 dbms_output.put_line ('My son Matt was born in May');
15 elsif current_month = 'OCT' then
16 dbms_output.put_line ('My wife was born in October');
17 else
18 dbms_output.put_line ('I do not have any relatives
19 born in '||current_month);
20 end if;
21 end;
22 /
I do not have any relatives born in JUN

PL/SQL procedure successfully completed.

SQL>

End Listing

16

Practice

6. Use a nested-if statement to output whether the highest employee in #5 had two or
more than the lower.

7. Output which decade of the twentieth century Bill Clinton was born in.

8. Create a PL/SQL procedure that computes and displays the average starting age of
the set of employees in the Employee database.

CURSORS

A cursor is a device that is used to retrieve a set of records from a table/view into
memory. Cursors allow each of the records to be read into the code block and processed
one-at-a-time. A cursor can be compared to a book containing a page mark. Each of the
pages is a record in the set of records retrieved when the cursor is executed. The
bookmark indicates the current page. When using a cursor, Oracle always knows the
current record. As one record is read into the code block, the current record is changed
just as the bookmark is changed as a page is read. Cursors are important tools for the
processing of records. They allow the developer to bring records into the code block and
to process them using a complex set of statements

17

Declaring the Cursor

Cursors are defined in the Declaration section of the code block. The definition consists
of the keywords Cursor and Is, the name of the cursor, and the Select statement used to
retrieve the record set. The following is an example of the cursor definition structure:

 Cursor cusor name is select statement;

Cursor Commands

There are three commands that are used in conjunction with cursors. These commands
are contained in Table:
Cursor Commands

Command Example Description
Open Open cursor_name; This command executes the

cursor’s Select statement and
places the records into
memory. The first record in
the set is the current set.

Fetch/into Fetch cursor_name into variables; This command assigns the
values from the current cursor
record to the listed local
variables or PL/SQL record.
It also makes the next record
in the set the current record.

Close Close cursor_name; Terminates the cursor and
frees the memory used by the
cursor for other uses.

18

Several items to remember about cursor commands are:

• The commands end with a semi-colon.

• Issuing the Open command when the cursor is currently open will cause an

error and terminate the procedure.

• Issuing the Close command when the Cursor is not open will cause an error
and terminate the procedure.

• Issuing the Fetch/into command when the cursor is not open will cause an

error and terminate the procedure.

• Issuing the Fetch/Into command after the last record has been fetched will not
cause an error. The values from the last record will be reassigned to the local
variables.

Using Cursors and Cursor Commands

SQL> declare
2 oldest_birth_date date;
3 lname employee.last_name%type;
4 fname employee.first_name%type;
5 cursor find_old_b_day is select min(birth_date) from

employee;
6 cursor id_employee is select last_name, first_name
7 from employee
8 where birth_date =

oldest_birth_date;
9 begin
10 open find_old_b_day;
11 fetch find_old_b_day into oldest_birth_date;
12 close find_old_b_day;
13 open id_employee;
14 fetch id_employee into lname, fname;
15 close id_employee;
16 dbms_output.put_line ('The Oldest Employee Is’
17 ||lname||', '||fname);
18 end;
19 /
The Oldest Employee Is JOHNSON, ANDREW

PL/SQL procedure successfully completed.

SQL>

End Listing

Value from the
old_b_day
cursor is used
as an argument

Cursor
commands

19

Using Aggregate Variables With Cursors

In the previous example local variables were defined for each of the columns retrieved by
the cursors. The developer had to declare each of the variables used to assign cursor
values and also had to include them in the fetch statements. There are two potential
problems with this method. These are:

1. The developer must document the local variable’s size and type. If the size of
the cursor variable is larger than the size of the local variable its value is
assigned to, an error will occur and the procedure will terminate. The
procedure will also terminate if the data types are different.

2. If the size of the column is changed, the procedure variables will also need to

be changed. Failure to change the procedure may cause the procedure to
terminate when run.

Using %rowtype to Define Cursor Variables

SQL> declare
2 cursor find_old_b_day is select min(birth_date) day
3 from employee;
4 old_date find_old_b_day%rowtype;
5 cursor id_employee is select last_name, first_name
6 from employee
7 where birth_date =

old_date.day;
8 id id_employee%rowtype;
9 begin

10 open find_old_b_day;
11 fetch find_old_b_day into old_date;
12 close find_old_b_day;
13 open id_employee;
14 fetch id_employee into id;
15 close id_employee;
16 dbms_output.put_line ('The Oldest Employee Is '
17 ||id.last_name||',

'||id.first_name);
18 end;
19 /
The Oldest Employee Is JOHNSON, ANDREW

PL/SQL procedure successfully completed.

SQL>

End Listing

PL/SQL
records

PL/SQL
record
variable

20

Several things to remember when using %rowtype are:

• The cursor must be defined before the PL/SQL record definition.

• All cursor columns must have a name. When expressions are included such as

the case of group functions, you must include a column alias.

Practice

9. Create a PL/SQL procedure that computes the hiring age of the first employee
hired by the “WEL” department.

21

Cursor Attributes

Cursor Attributes

Name Description
%found This attribute is true if the last fetch

statement returned a record. It is
false if it did not.

%notfound This attribute is true if the last fetch
statement did not return a record. It
is false if it did.

%rowcount This attribute returns the number of
fetch commands that have been
issued for the cursor.

%isopen This attribute is true if the indicated
cursor is currently open. It is false if
the cursor is currently closed.

These commands are used in a condition within the procedure. They are used to evaluate
the condition of a cursor. Based upon this condition, an action will occur. The syntax of
the expression is as follows:

 Cursor_name%isopen

22

Using %isopen Cursor Attribute to Control Errors

CHAPTER 1 SQL> DECLARE
 2 CURSOR NAME IS SELECT
MAX(FIRST_NAME) FNAME,
CHAPTER 2 3 MAX(LAST_NAME)
LNAME
 4 FROM EMPLOYEE;
 5 NAMES NAME%ROWTYPE;
CHAPTER 3 6 BEGIN
CHAPTER 4 7 IF NOT NAME%ISOPEN THEN
CHAPTER 5 8 OPEN NAME;
CHAPTER 6 9 END IF;
CHAPTER 7 10 FETCH NAME INTO NAMES;
CHAPTER 8 11 DBMS_OUTPUT.PUT_LINE
(NAMES.FNAME||' '||NAMES.LNAME);
CHAPTER 9 12 IF NAME%ISOPEN THEN
CHAPTER 10 13 CLOSE NAME;
CHAPTER 11 14 END IF;
CHAPTER 12 15 END;
CHAPTER 13 16 /
CHAPTER 14 WOODROW WILSON
CHAPTER 15
CHAPTER 16 PL/SQL PROCEDURE
SUCCESSFULLY COMPLETED.
CHAPTER 17
CHAPTER 18 SQL>
CHAPTER 19
End listing

%Isopen
cursor
variable

Differences Between a Cursor and a Select/Into Statement

A cursor and a Select/Into statement are similar in that they both can be used to retrieve
values for local variables. There are two shortcomings with the Select/Into statement.
These are:

1. The Select/Into statement cannot be used to process multiple database records.
If the Select command retrieves more than one record, an error will occur.

2. If the Select/Into statement does not return a record from the database, an

error will occur.
A cursor does not have these limitations. Cursors can process multiple records. In
addition, failure of the cursor to retrieve a record will not cause an error to occur. Null
values will be brought into the procedure variables by the fetch command. For these two
reasons, a cursor is preferable to the Select/Into statement.

23

Practice

10. Cause a “cursor already open” error to occur.

11. Fix the error produced in #10 using the %isopen cursor attribute.

LOOPS

There are three types of looping structures. These are the Loop structure, While
structure, and For structure. The former two structures will be discussed in this section.
The For looping structure will be discussed in the next section.

Each of the loop structures has three things in common:

1. The structure contains the Loop keyword.

2. Each structure ends with the End loop keywords.

3. Each structure uses a conditional expression to determine whether to stop the

looping.

24

The Loop Structure

The following is a template of the Loop structure:

 Loop

 Statements;

 When break_out condition then exit;

 Statements;

 End loop;

The Loop Structure

SQL> declare
2 counter_variable number := 1;
3 cursor a is select last_name from employee;
4 cur_var a%rowtype;
5 begin
6 open a;

7 loop
8 exit when counter_variable = 7;
9 fetch a into cur_var;
10 dbms_output.put_line (cur_var.last_name);
11 counter_variable := counter_variable +1;
12 end loop;
13 end;
14 /

COOLIDGE
JOHNSON
REAGAN
BUSH
JOHNSON
CLINTON

PL/SQL procedure successfully completed.
SQL>

End listing

Beginning
of loop

Breakout
statement

End of the loop
structure

25

The Loop Structure Using the If-Then Structure to Terminate the Loop

SQL> declare
2 counter_variable number := 1;
3 cursor a is select last_name from employee;
4 cur_var a%rowtype;
5 begin
6 open a;
7 loop
8 if counter_variable = 7 then exit; end if;
9 fetch a into cur_var;
10 dbms_output.put_line (cur_var.last_name);
11 counter_variable := counter_variable +1;
12 end loop;
13 end;
14 /
COOLIDGE
JOHNSON
REAGAN
BUSH
JOHNSON
CLINTON

PL/SQL procedure successfully completed.

SQL>

End listing

If
statement
used to
breakout of

Practice

12. Determine the hiring date for Ronald Reagan and how many tool and eyeglass
purchases he made.

13. Use a simple loop to list the first 12 records of the Emp_tools table. Use the

When keyword to construct the loop breakout.

14. Modify your procedure in #13. Use the If-then structure to construct the loop
breakout.

26

The While Loop

. The following is a syntax template of the While looping structure:

 While breakout_condition
 Loop

 Statements;
 End loop;

The While loop Structure

SQL> declare
2 counter_variable number := 1;
3 cursor a is select last_name from employee;
4 cur_var a%rowtype;
5 begin
6 open a;
7 while counter_variable != 7
8 loop
9 fetch a into cur_var;

10 dbms_output.put_line (cur_var.last_name);
11 counter_variable := counter_variable +1;
12 end loop;
13 end;
14 /

COOLIDGE
JOHNSON
REAGAN
BUSH
JOHNSON
CLINTON

PL/SQL procedure successfully completed.

SQL>

End listing
Using the %found

While loop
condition

27

Using the %found cursor attribute with loops

 Open cursor_name;
 Fetch cursor_attributes into local_variables;
 While (cursor_name%found)
 Loop
 Statements;
 Fetch cursor_attributes into local_variables;
 End loop;
 Close cursor_name;

Illustrates a Loop Using the %found Cursor Attribute.
A While loop using the %found attribute

SQL> declare
2 cursor a is select last_name from employee;
3 cur_var a%rowtype;
4 begin
5 open a;
6 fetch a into cur_var;
7 while a%found
8 loop
9 dbms_output.put_line (cur_var.last_name);
10 fetch a into cur_var;
11 end loop;
12 end;
13 /

COOLIDGE
.
.
.
ROOSEVELT
ANTHONY
ROOSEVELT

PL/SQL procedure successfully completed.

SQL>

End listing

A record is
fetched
before the
loop

Another
fetch
command
is used at
the end of

28

Nested Loops
A Nested While Loop Used to Compute the Highest Priced Tool

SQL> declare
2 cursor a is select payroll_number, last_name from employee
3 where fk_department = 'WEL';
4 a_var a%rowtype;
5 cursor b is select tool_name, tool_cost from emp_tools
6 where fk_payroll_number = a_var.payroll_number;
7 b_var b%rowtype;
8 hi_tool_name emp_tools.tool_name%type;
9 hi_tool_cost emp_tools.tool_cost%type;
10 begin
11 open a; fetch a into a_var;
12 while a%found loop
13 open b; fetch b into b_var;
14 while b%found loop
15 if b_var.tool_cost > hi_tool_cost or b_var.tool_cost is null then
16 hi_tool_name := b_var.tool_name;
17 hi_tool_cost := b_var.tool_cost;
18 end if;
19 fetch b into b_var;
20 end loop;
21 close b;
22 dbms_output.put_line (a_var.last_name||' '||b_var.tool_name);
23 hi_tool_name := null;
24 hi_tool_cost := null;
25 fetch a into a_var;
26 end loop;
27 close a;
28 end;
29 /
REAGAN Tool Chest
CARTER Tool Chest
HOOVER TIN SNIPS
TAFT FOUNTAIN PEN
ANTHONY STAPLER
ROOSEVELT PLIERS

PL/SQL procedure successfully completed.

SQL>

End listing

Nested

Practice

15. Create a procedure that displays the employees in the “INT” department. Use a
While loop.

16. Create a procedure that determines the number of tool purchases and the number

of eyeglass purchases per employee. Use the %rowcount cursor attribute to
number the displayed rows.

17. Recreate #15 using the %notfound cursor attribute.

29

Locking Records With the For Update Of Option

A Cursor Select Statement Using the For Update Option

SQL> declare
2 cursor a is select last_name, first_name from employee
3 where fk_department = 'WEL'
4 for update;
5 a_var a%rowtype;
6 begin
7 open a;
8 fetch a into a_var;
9 while a%found loop
10 dbms_output.put_line (a_var.last_name);
11 fetch a into a_var;
12 end loop;
13 end;
14 /
REAGAN
.
ROOSEVELT
PL/SQL procedure successfully completed.
SQL>

End Listing

For Update
Keyword
That Locks
the Cursor
Records

The For Update Of Option
A Cursor With the For Update Of Option

SQL> declare
2 cursor a is select last_name, first_name from employee
3 where fk_department = 'WEL'
4 for update of wages;
5 a_var a%rowtype;
6 begin
7 open a;
8 fetch a into a_var;
9 while a%found loop
10 dbms_output.put_line (a_var.last_name);
11 fetch a into a_var;
12 end loop;
13 end;
14 /

REAGAN
CARTER
HOOVER
TAFT
ANTHONY
ROOSEVELT

PL/SQL procedure successfully completed.

SQL>

End listing

This For Update
Statement Will Not
Lock Records Since
the Wages Columns
is Not in the Select

30

The Where Current Of Option

This has two important benefits:

1. Performance. Oracle always knows the current record. When the record is
modified, Oracle can go directly to the record without having to locate the
record in the table. If the option is missing, the Update and Delete statements
will need a Where clause to locate the proper record. This will require some
I/O. The Where Current Of option can dramatically increase performance of
data modification procedures.

2. Code Simplification. The option eliminates the need to create a Where clause

for the DML commands. This eliminates the need to create local variables,
fetch values for the variables, and include them in the Where clause. The
option will reduce the size of the procedure.

Update tablename set column_name = value
 Where current of cursor_name;

31

An Update Statement Using the Where Current Of Option

SQL> declare
2 cursor a is select last_name, first_name, wages from employee
3 where fk_department = 'WEL'
4 for update;
5 a_var a%rowtype;
6 begin
7 open a;
8 fetch a into a_var;
9 while a%found loop

10 dbms_output.put_line (a_var.last_name||' '||to_char(a_var.wages));
11 update employee set wages = wages * 1.03
12 where current of a;
13 fetch a into a_var;
14 end loop;
15 close a;
16 open a;
17 fetch a into a_var;
18 while a%found loop
19 dbms_output.put_line (a_var.last_name||' '||to_char(a_var.wages));
20 fetch a into a_var;
21 end loop;
22 close a;
23 end;
24 /
REAGAN 14500
CARTER 14000
HOOVER 10000
TAFT 8500
ANTHONY 7000
ROOSEVELT
REAGAN 14905
CARTER 14390
HOOVER 10300
TAFT 8755
ANTHONY 7210
ROOSEVELT

PL/SQL procedure successfully completed.

SQL>

End Listing

This clause tells
Oracle exactly
where the record
to be updated

Practice

18. Create a procedure that updates the Absences column in the Employee table. The
value should be set to 0. Use the Where Current Of option.

32

FOR LOOPS

Numeric For loops

A syntax template for the structure follows:

For counting_variable
 in lower_range_number .. highest_range_number

 Loop
 Statements;
 End loop;

Using the numeric For loop

SQL> declare
2 cursor a is select first_name, last_name from employee;
3 emp_var a%rowtype;
4 begin
5 open a;
6 for cnt_var in 1..10
7 loop
8 fetch a into emp_var;
9 dbms_output.put_line(to_char(cnt_var)||' '||emp_var.last_name);

10 end loop;
11 close a;
12 end;
13 /
1 COOLIDGE
2 JOHNSON
3 REAGAN
4 BUSH
5 JOHNSON
6 CLINTON
7 CARTER
8 FORD
9 NIXON
10 KENNEDY

PL/SQL procedure successfully completed.
SQL>

End listing

Numeric For
Loop Header

33

Using the Numeric For Loop Using the Reverse Option

SQL> declare
2 cursor a is select first_name, last_name from employee;
3 emp_var a%rowtype;
4 begin
5 open a;
6 for cnt_var in reverse 3..10
7 loop
8 fetch a into emp_var;
9 dbms_output.put_line(to_char(cnt_var)||' '||emp_var.last_name);
10 end loop;
11 close a;
12 end;
13 /

10 COOLIDGE
9 JOHNSON
8 REAGAN
7 BUSH
6 JOHNSON
5 CLINTON
4 CARTER
3 FORD

PL/SQL procedure successfully completed.

SQL>

End listing

Same list of last_name values as
in Listing 14.21. Only the
corresponding counter variable

Practice

19. Create a procedure that displays the five oldest employees. Use a numeric For
loop in your procedure and number each record.

20. Modify the procedure you built in #19 to number the records in reverse order.

34

The Basic Cursor For Loop

The basic Cursor For loop eliminates the shortcomings of the Numeric For loop when the
Numeric For loop is used with cursors. The Cursor For loop is similar to the Numeric
For loop, but has four main differences:

1. The high and low range values in the header are changed to the name of the
cursor. This in effect tells Oracle to use an implied %notfound cursor
attribute to denote the cursor records have been processed.

2. The structure does not have a counting variable. Since the range values are

not needed, a counting variable is not created or needed.

3. The cursor commands Open, Fetch, and Close are not needed. These
commands are implicitly issued by the Loop structure.

4. The local variables used within the loop do not have to be defined. Oracle

will create a PL/SQL record for the cursor’s fetched attributes. These
variables are qualified by the name of the Cursor For loop.

The Basic Cursor For loop

SQL> declare
2 cursor a is select first_name, last_name from employee;
3 begin
4 for cnt_var in a
5 loop
6 dbms_output.put_line(to_char(a%rowcount)||' '||cnt_var.last_name);
7 end loop;
8 end;
9 /

1 COOLIDGE
.
.
19 ROOSEVELT

PL/SQL procedure successfully completed.

End Listing

PL/SQL
record

Cursor name

35

Defining the Cursor in the Cursor For Header

The Cursor For loop with the cursor defined within the loop

SQL> begin
2 for cnt_var in (select first_name, last_name from employee)
3 loop
4 dbms_output.put_line(cnt_var.last_name);
5 end loop;
6 end;
7 /

COOLIDGE
JOHNSON
.
.
ANTHONY
ROOSEVELT

PL/SQL procedure successfully completed.

SQL>

End Listing

Nested For loops
A nested cursor for loop

SQL> declare
2 hi_tool_name emp_tools.tool_name%type;
3 hi_tool_cost emp_tools.tool_cost%type;
4 begin
5 for outer_loop in (select payroll_number, last_name from employee
6 where fk_department = 'WEL')
7 loop
8 for inner_loop in (select tool_name, tool_cost from emp_tools
9 where fk_payroll_number = outer_loop.payroll_number)
10 loop
11 if (inner_loop.tool_cost > hi_tool_cost
12 or hi_tool_cost is null) then
13 hi_tool_name := inner_loop.tool_name;
14 hi_tool_cost := inner_loop.tool_cost;
15 end if;
16 end loop;
17 dbms_output.put_line (outer_loop.last_name||' '||hi_tool_name);
18 hi_tool_name := null;
19 hi_tool_cost := null;
20 end loop;
21 end;
22 /
REAGAN Tool Chest
CARTER
HOOVER TIN SNIPS
TAFT FOUNTAIN PEN
ANTHONY BRIEF CASE
ROOSEVELT CALCULATOR

PL/SQL procedure successfully completed.

SQL>

End listing

Outer loop
variable used
in the inner
loop cursor

36

Practice

21. Create a procedure to list the employees in the “INT” and “POL” departments.
Use a Cursor For loop in this procedure. The procedure should define a cursor.

22. Modify the procedure in #21. Define the select statement used in the Cursor For

loop within the Cursor For structure.

23. Create a procedure that determines the date of the highest priced tool and the date
of the highest priced eyeglass purchase for each employee. Use nested Cursor For
loops

